Perturbation of Eigenvalues of Preconditioned Navier-stokes Operators

نویسنده

  • HOWARD C. ELMAN
چکیده

We study the sensitivity of algebraic eigenvalue problems associated with matrices arising from linearization and discretization of the steady-state Navier-Stokes equations. In particular, for several choices of preconditioners applied to the system of discrete equations, we derive upper bounds on perturbations of eigenvalues as functions of the viscosity and discretization mesh size. The bounds suggest that the sensitivity of the eigenvalues is at worst linear in the inverse of the viscosity and quadratic in the inverse of the mesh size, and that scaling can be used to decrease the sensitivity in some cases. Experimental results supplement these results and connrm the relatively mild dependence on viscosity. They also indicate a dependence on the mesh size of magnitude smaller than the analysis suggests. Abstract. We study the sensitivity of algebraic eigenvalue problems associated with matrices arising from linearization and discretization of the steady-state Navier-Stokes equations. In particular, for several choices of preconditioners applied to the system of discrete equations, we derive upper bounds on perturbations of eigenvalues as functions of the viscosity and discretization mesh size. The bounds suggest that the sensitivity of the eigenvalues is at worst linear in the inverse of the viscosity and quadratic in the inverse of the mesh size, and that scaling can be used to decrease the sensitivity in some cases. Experimental results supplement these results and connrm the relatively mild dependence on viscosity. They also indicate a dependence on the mesh size of magnitude smaller than the analysis suggests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incomplete Augmented Lagrangian Preconditioner for Steady Incompressible Navier-Stokes Equations

An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton li...

متن کامل

A Shape Hessian-Based Boundary Roughness Analysis of Navier-Stokes Flow

The influence of boundary roughness characteristics on the rate of dissipation in a viscous fluid is analyzed using shape calculus from the theory of optimal control of systems governed by partial differential equations. To study the mapping D from surface roughness topography to the dissipation rate of a Navier–Stokes flow, expressions for the shape gradient and Hessian are determined using th...

متن کامل

Lower Bounds for the Spectrum of the Laplace and Stokes Operators

We prove Berezin–Li–Yau-type lower bounds with additional term for the eigenvalues of the Stokes operator and improve the previously known estimates for the Laplace operator. Generalizations to higher-order operators are given. Dedicated to Professor R.Temam on the occasion of his 70th birthday

متن کامل

Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations

Discretization and linearization of the steady-state Navier-Stokes equations gives rise to a nonsymmetric indeenite linear system of equations. In this paper, we introduce preconditioning techniques for such systems with the property that the eigenvalues of the preconditioned matrices are bounded independently of the mesh size used in the discretization. We connrm and supplement these analytic ...

متن کامل

Using Python to Solve the Navier-Stokes Equations - Applications in the Preconditioned Iterative Methods

This article describes a new numerical solver for the Navier-Stokes equations. The proposed solver is written in Python which is a newly developed language. The Python packages are built to solve the Navier-Stokes equations with existing libraries. We have created discretized coefficient matrices from systems of the Navier-Stokes equations by the finite difference method. In addition we focus o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995